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1 Introduction

Consider the general nonlinear system

Mz + Ny —h
F(z,y) = Y =0, (z,9) >0, (1.1)
XYe
where z,y,h,e € R*, M, N € R*" X = diag(z), Y = diag(y) and e has all components

equal to one.

We call the following set the feasibility set of problem (1.1):
Q={(z,y): 2,y € R",Mz + Ny = h,(z,y) > 0}.

A feasible pair (z,y) € Q is said to be strictly feasible if it is positive. In this work we tacitly
assume that the relative interior of () is nonempty, i.e., strictly feasible points exist.

Problem (1.1) is sufficiently general to include linear and quadratic programming prob-
lems, and linear complementarity problems. Observe that if N = —1I, then this problem is
the standard linear complementarity problem (LCP). Moreover, the assumption that M is
positive semi-definite will be sufficient to guarantee that the algorithms under investigation
produce well-defined iterates (Corollary 2.1).

It is well-known that quadratic programs are special cases of linear complementarity
problems. We now provide a somewhat different formulation of quadratic programs as spe-
cial cases of Problem (1.1) instead of those of the standard LCP. Consider the quadratic
program (QP)

minimize ¢’z + %.’L‘TQ:L'

subject to Az = b, (1.2)

z 20,

where ¢,z € R*, b € R™, A € R™"*(m < n) and has full row rank, and ¢ € R"*" is
symmetric. In Corollary 2.1, we will demonstrate that iterates produced by the algorithms
under investigation are well-defined if ) is positive semi-definite on the null space of A. In
this case, it is well-known that the problem is convex and the first order conditions are both
necessary and sufficient for optimality. The first-order conditions for (1.2) can be transformed

into the form of (1.1). To see this, let B € R(»™)*" be any matrix such that the columns of



BT form a basis for the null space of A. The first-order conditions for the quadratic program

(1.2) are (see Dantzig [1])

Az —b
ATA —Qz4+y—c | =0, (z,y) 20, (1.3)
XYe

where A and y are the dual variables. To eliminate the dual variables A from the above
system, we pre-multiply the second equation by the nonsingular matrix [AT BT]T. Noticing

that BAT = 0, we obtain

AAT) — A(Qz —y +¢)

A T
0= (AXA=Qz+y—c) =
B —BQz + By — Be

Since AAT is nonsingular, A is uniquely determined once x and y are known. Removing
the equation for A, we arrive at the following 2n-dimensional nonlinear system with non-

negativity constraints for (z,y)

Az —b
——BQx +By—Bc | = 0, (w,y) > 0. (1.4)
XYe

Clearly, (1.4) is in the form of (1.1) with

A 0 b
M = , N= and h = . (1.5)
-BQ B Be

When @ = 0, the quadratic program (1.2) reduces to a standard-form linear program

(LP)

minimize ¢’z
subject to Az = b, (1.6)
z 2> 0.

Hence (1.2) also includes the linear program. However, because of the importance of lin-
ear programming in optimization, we will state results for linear programming separately;
fully aware that they are special cases of quadratic programming. We have shown that the

framework of problem (1.1) is quite general.



The objective of this work is to analyze the asymptotic behavior of a generic interior-
point algorithm for solving problem (1.1). More specifically, we will study the Q-convergence
rate of this general algorithm. The issues of global convergence and complexity are not of
concern here.

Recently, Zhang, Tapia and Dennis [18, see Theorem 3.1] established a @-superlinear
convergence theory for a class of primal-dual interior-point algorithm for linear programming.
In this paper, we extend their result to the general problem (1.1) and therefore extend the
result to quadratic programming and linear complementarity problems. In spite of its close
connection to [18], we have made this paper self-contained.

Given u,v € R™ and 5 € R, We will use the notation:

min(u) = min [u]; and min(w,v,n) = min{min(x), min(v),7n},

where [u]; denotes the i-th component of u.
The paper is organized as follows. In Section 2, we describe a general interior-point
algorithmic framework for (1.1). Then in Section 3, we present our superlinear convergence

rate result. Concluding remarks are given in Section 4.

2 Algorithm

It is now fairly well understood how a class of interior-point algorithms can be viewed as
damped Newton methods and that the inclusion of the logarithmic barrier term (so-called
centering) can be viewed as perturbing the right-hand side of the Newton system. Indeed,
Zhang, Tapia and Dennis [18] focused on issues concerning how fast the damped Newton
method could approach the Newton method (i.e., step-length approaches one), and how fast
the perturbation term (barrier parameter) should be phased out so that the fast conver-
gence of Newton’s method is not compromised. Their work covered linear programming
applications. As previously mentioned, the objective of the present work is to extend a
particular nice part of their superlinear convergence theory to quadratic programming and
linear complementarity problems. Our vehicle for accomplishing this objective is the use of

the general problem (1.1). We assume that the reader is familiar with the above algorithmic



considerations and therefore present our algorithmic framework with no further motivation

or explanation.

Recall that F(z,y) is given by (1.1).
Algorithm 1 Given a pair (zo,y0) > 0. For k =0,1,2,..., do
(1) Choose oy € [0,1) and 7, € (0,1). Set uy = oxzlyr/n.
(2) Solve the following system for (Azy, Ayx):

Az 0
F'(zk, yx) A = —F(zk,yx) + . (2.1)
y HEE

(3) Compute the step-length:

min(Xk_lAmk, Yk‘lAyk, —T%) )

ar =

(2.2)

(4) Update: 411 = zi + xAzg and yry1 = yx + axAy;.

Notice that in Algorithm 1, we do not require that the starting point (xo, yo) be feasible.
Also notice that without the perturbation term yye in the right-hand side of (2.1), the search
direction (Awg, Ayk) is the Newton step. We always have 0 < oy < 1. Moreover, a; =1 if
and only if min(X; Az, Y7 Ay) > —7. We should expect that only in rare cases would
the full Newton step lead to a strictly positive iterate; hence we should expect in most cases
to have ay < 1 where o4 is given by (2.2). The choice 7, = 1 corresponds to allowing
steps to the boundary of the positive orthant and a loss of strict feasibility. Therefore, it is
natural to view Algorithm 1 as a perturbed and damped Newton’s method. We see that if
(z0,¥0) is in Q, then the iteration sequence {(zx,yx)} will be strictly feasible. In the case
of linear programming, there are no linear equations in F(z,y) that involve both z and y.
If (2, yx) € Q, then different step-lengths can be used to update z; and yj and still retain
strictly feasible (zr41,yk+1). This strategy has been shown to be more efficient in practice
(see Lustig, Marsten and Shanno [9], for example). However, it will not affect our results

since our analysis will show that as long as 7 — 1 both step-lengths will converge to one.



Algorithm 1 covers or is closely related to a wide range of existing interior-point algo-
rithms for linear programming, quadratic programming and linear complementarity prob-
lems. In particular, it covers most of the existing primal-dual interior-point algorithms
for linear programming as well as quadratic programming, including Kojima, Mizuno and
Yoshise [7], Todd and Ye [15], Monteiro and Adler [12, 13], Lustig [8], Gonzaga and Todd [2],
Mizuno, Todd and Ye [11]. Algorithms for linear complementarity problems that are cov-
ered by or closely related to Algorithm 1 include Kojima, Mizuno and Yoshise [5, 6], Kojima,
Megiddo and Noma (3], and Kojima, Mizuno and Noma [4].

Although these algorithms have been motivated and presented in various ways including
path-following (homotopy or continuation), potential reduction or affine scaling algorithms,
most of them fit into the framework of the perturbed and damped Newton’s method applied
to the general problem (1.1). Due to the extensive activity in this area, our list of references
is not complete. For a more complete list of references, especially in the cases of quadratic
programming and linear complementarity problems, we refer the reader to two recent survey
papers by Ye (16, 17].

The following proposition gives a condition which guarantees that the iterates produced

by Algorithm 1 are well-defined.

Proposition 2.1 The iterates produced by Algorithm 1 are well-defined if for any positive
diagonal matriz D € R™*", the matrix N — M D is nonsingular.

Proof: Since (20,y0) > 0 and

M N
F'(:I:,y): v x , (2.3)

the nonsingularity of F'(z¢,y0) is equivalent to that of

I —MY! 0 N-MY X,
° F,(x(h yO) = ° °
0 I Yo Xo

This latter matrix is nonsingular if and only if N—MY; ' X, is nonsingular. By our condition,
(z1,91) is well-defined. An induction argument completes the proof. O
The following corollary is well-known and one can easily verify that Proposition 2.1 is

satisfied in the three cases of interest.



Corollary 2.1 The iterates produced by Algorithm 1 are well-defined for
1. the linear complementarity problem (N = —1I) with M positive semi-definite,

2. the quadratic programming problem (1.2) with Q positive semi-definite on the null space
of A,

3. the linear programming problem (1.6).

We should mention that we have stated Algorithm 1 in the current form purely for the
purposes of obtaining a unified theory and notational convenience. By directly applying
the perturbed and damped Newton method to the first order conditions for the quadratic
program (1.2), it is not difficult to see that an identical iteration sequence {(zk,yx)} will be

generated without eliminating the dual variable A and introducing the matrix B.

3 Superlinear Convergence

The literature contains numerous studies directed at investigating the convergence properties
of interior-point algorithms covered by or closely related to Algorithm 1. However, most of
these studies were concerned only with the issues of global convergence and complexity. The
issue of convergence rate, which is certainly important, has not been thoroughly studied for
many interior-point algorithms. One of the few papers that studied asymptotic behavior
(local convergence) of interior-point algorithms is Kojima, Megiddo and Noma. [3]. In their
paper, Kojima, Megiddo and Noma proved that for a class of complementarity problems,
Q-linear, in addition to global convergence, superlinear and quadratic local convergence can
be achieved by some interior-point algorithms in the form of Algorithm 1. However, all their
convergence rate results were obtained under the restriction that the Jacobian matrix F'(z, y)
was nonsingular at the solution. In this section, we provide a set of sufficient conditions
for superlinear convergence of Algorithm 1 applied to the general problem (1.1). These
conditions do not require the nonsingularity of F'(z,y) at solutions. How to apply these
conditions to construct globally and superlinearly convergent algorithms is an interesting

topic and the subject of further research.



It is satisfying that it is possible to obtain a superlinear convergence rate without the
assumption of nonsingularity of the Jacobian matrix at the solution. In the case of linear pro-
gramming, this allows one to avoid restrictive nondegeneracy assumptions. The motivation
for this theory came from numerical experiments that demonstrated superlinear convergence
even for highly degenerate linear programs.

At the k-th iteration of Algorithm 1, let

zFyk/n

e = min(X;Yie)

Since zTyx/n is the average value of the elements of XiYje, it is clear that e > 1.

Theorem 3.1 Let {(xx,yx)} be generated by Algorithm 1 with 1, — 1 and o), — 0, and let

(Zk, yk) = (Tu,ys). Assume

(i) strict complementarity,

(ii) the sequence {ni} is bounded,

(iii) there exists p € [0,1) such that for k sufficiently large

Acf Aye > ~ LA (X7 V) Az + AT (XY ) Ags).

Then (z.,y.) solves problem (1.1) and the sequence { F(xk,yx)} component-wise converges to
zero Q-superlinearly. Furthermore, the sequence {F(zy,yx)} is Q-superlinearly convergent,

i.e., for any norm
lim sup | (zkt1, Yrs1)]]

=0.
koo 1 (zk, i)

Before we prove Theorem 3.1, we would like to comment on the assumptions of Theo-
rem 3.1. First, Assumption (iii) is not particularly restrictive since we will see later that
in the context of linear programming, quadratic programming with @ positive semi-definite
on the null space of A and linear complementarity problems with M positive semi-definite,
we have the stronger result that Azl Ay > 0 for (zx,yx) € Q. We used the more general
Assumption (iii) instead of Az7 Ay, > 0 based on the consideration that the former could

be useful in studying situations where (z, yx) is not feasible. We stress that the algorithm



designer is free to choose o4 and 7%, and the requirement that they be chosen so that o — 0
and 7 — 1 is not particular restrictive.

On the other hand, the compatibility of Assumptions (ii) with the choices 7, — 1 and
or — 0 may be a cause for concern. It seems as if letting 7, — 1 and o — 0 might force
nx — oo. However, our numerical experience has shown this not to be the case for linear
programming. In our numerical studies with Netlib problems for linear programming, we let
v — 1 and ox — 0 and always observed strict complementarity and bounded {nx}. While
on occasion we saw some rather large values for n;’s, they eventually leveled off or actually
started to decrease as the iterates approached a solution. We did not observe continued
growth in the values of 7; as our algorithm converged. Moreover, the observed convergence
was clearly @-superlinear and ay — 1. Of course, the behavior of {7} varies with several
factors including how fast {7} converges to one and {0k} to zero. We do not mean to imply
that unbounded {7} cannot occur. Instead, we feel that it appears to be more the exception
than the rule in linear programming. It still remains to be seen whether or not this same
phenomenon exists in quadratic programming and linear complementarity problems. There
1s no doubt that this topic merits further study.

To prove Theorem 3.1, we need the following lemma.

Lemma 3.1 Under the assumptions of Theorem 3.1,

klim ap = 1. (3.1)
Proof: Define at each iteration
pe = X Az, and g = Y, Ay (3.2)

At iteration k, from (2.1) and (2.3) we have
iz, + Xi Ay = =Xk Yie + pre,
or equivalently, recalling that uy = orz}ys/n (see Step (1) of Algorithm 1)
P+ @ = —e+ i (XiYs)le = —e + oxTre, (3.3)
where Ty = (2} yi/n) (X Y:)™!. Since g = ||Tkel|co, Assumptions (ii) and ox — 0 imply

Jim (pe + g) = —e. (3.4)

9



Multiply both sides of (3.3) by (XkYk)‘% and consider the square of the {;-norm. We
have the following equality

zFyr eT (X Y:) e
XY Epell2 + (XY Faull? + 2A0T Ay = =T (1_20k+az v ¢ (XET) )

Note that
(X Ye) Epill3 = Azl (X7 Vi) Az and [[(XeYi)Pqell3 = Ayp (XeYi") Ay

By Assumption (iii),

Ty eT (X Y:) e
(1 = D)X Ye)pll; + I (XYe)Zaull?) < 2y (1 P % T knk) ) _
Dividing the above inequality by z{yi/n, we obtain

_1 1 eI The
(1= o) (T ®pell + 1Ty 2 qell3) < n(1 — 204 + 07

). (3.5)

Assumption (ii) implies that {||T%||} is bounded above and {||T} '1_’”} is bounded away from
zero. Therefore, from (3.5) both {px} and {¢x} are bounded. It now follows from (2.2) that
{ax} is bounded away from zero.

Now assume [z.]; > 0. Obviously,

T [-’Ek+1]i__ . .
L= lim Tog = Am o+ elpdy).

This implies [px]; — 0, because {ax} is bounded away from zero. From (3.4) we have

[gr): = —1. On the other hand, if [z.]; = 0, then [y.]; > 0 by strict complementarity.

The same argument, interchanging the roles of py and g, gives [gx]i — 0 and [px]; — —1.

Therefore, the components of px and ¢; converge to either 0 or —1. Consequently, from (3.2),

(2.2) and 7, — 1 it follows that ax — 1. This completes the proof. o
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let
Fi(z,y) = Mz + Ny —h and Fy(z,y) = XYe.

We will prove that both {Fy(zk,yx)} and {Fa2(zk,yx)} component-wise converge to zero
Q-superlinearly. This will imply that {F'(zk,yx)} component-wise converges to zero Q-
superlinearly. It is not difficult to see that component-wise @)-superlinear convergence of a

vector sequence implies its ()-superlinear convergence.

10



First we show that {Fi(zk,yx)} component-wise converges to zero @-superlinearly. If
Fi(z0,90) = 0 (i.e., (2o, Yo) is a feasible starting point), then it is easy to see that Fy(zx,yx) =
0 for all k. Therefore, we need only consider the case where Fi(zo,y0) # 0. Note that
Newton’s method solves linear equations in one step. If for some integer p > 0, o, = 1, then
we have Fy(zk,yx) = 0 for all k£ > p. Therefore, we need only consider the case where ax <1

for all k. It is easy to see from Steps (2) and (4) of Algorithm 1 that
Fi(zke, Yer1) = (Mo + Ny — h) + o (M Az + NAye) = (1 — o) Fi(2, yi)-

Since ay — 1, { Fi(zk,yx)} component-wise converges to zero J-superlinearly.
Next, we show that { Fy(zx,yx)} component-wise converges to zero )-superlinearly. From

Step (4) of Algorithm 1,
Xilzip = e+ oupe and Y 'yeqr = e + oy
Adding the above two equations, we have
Xi'zesr + Yo yker = 2e + ok(pr + qi)-
It follows from (3.4) and ay — 1 that
Um (X zes + Y i) = e (3.6)

If [z.]); = 0, then by strict complementarity, [y.); > 0 and [yx4+1)i/[ye]i — 1. It follows
from (3.6) that [zg41]:/[zk]i — 0. Therefore, [zi]; — 0 @-superlinearly. By the symmetry of
the relation (3.6), we have [yx]; — 0 Q-superlinearly if [y.]; = 0. Thus, all variables that

converge to zero do so @)-superlinearly. That is, for each index ¢ either

lim [l _ 0 and lim [ysl: =1
koo [xg]; k—oo [yl;

or

lim 2kl =1 and L -———[ka]i = 0.
koo [xg]; koo [yxl:

In either case, for every index z,

. zk)ilyg)s . [ Xk+1Yetr€)i
lim *——r—— = lim —————— = 0. 3.7
kmoo [orlilyal koo [XpYee): (3:7)

11



We have proved that {[{X;Yxe];} converges to zero Q-superlinearly for every index i. As
was mentioned above, the component-wise Q-superlinear convergence of {F'(z, yx)} implies
its ()-superlinear convergence. This completes the proof. O

A key idea in the proof of Theorem 3.1 can be traced back to a work by Tapia in 1980
[14]. In that paper, Tapia pointed out {14, Theorem 3] that an algorithm which at each
iteration satisfies the Taylor linearization of the complementarity equation has the property
that the variables that converge to zero do so Q-superlinearly. This result assumed strict

complementarity and step-length one. Observe that (3.6) is equivalent to

XiYie + Yi(zrr1 — k) + Xe(yre41 — yx) — 0.

We see that the Taylor linearization of complementarity is satisfied asymptotically in our
situation.
The following theorem deals with the Q-superlinear convergence of Algorithm 1 applied

to linear complementarity problems, quadratic programming and linear programming.

Theorem 3.2 Let {(zk,yx)} be generated by Algorithm 1 with 7y — 1 and o — 0, and let
(g, k) — (Tu,ys). Under Assumptions (i)-(it) of Theorem 3.1, if (x,,y,) € Q for some p,
then (., y«) solves problem (1.1) and the sequence {F(xk,yx)} component-wise converges to

zero Q-superlinearly for the following three cases:

1. the linear complementarity problem (N = —I) with M positive semi-definite,

2. the quadratic programming problem (1.2) with Q positive semi-definite on the null space
of A,

3. the linear programming problem (1.6).

Proof: We need to prove that Assumption (iii) of Theorem 3.1 is satisfied for each of the
above three cases. Observe that for all £ > p we have (zk,yx) € Q@ and MAz, + NAyx =0
(see (2.1)). It suffices to prove that uTv > 0 for all u,v € R" satisfying Mu + Nv = 0.

In the first case (N = —I), Mu + Nv = 0 is equivalent to v = Mu. Hence uTv =
uTMu > 0 because M is positive semi-definite.

In the second case (see (1.5)), Mu + Nv = 0 is equivalent to Au = 0 and BQu = Bv.

Using the representations u = BTy, and v = ATv,+BTv,, where v; € R™ and uy,v; € R*™™,

12



and noticing that AT 1 BT, we have uTv = ul BBTv,. Moreover, BQu = Bv is equivalent

to BQBTuy = BBTv,. Hence, if Q is positive semi-definite in the null space of A, then
uTv = ul BB vy = ul (BQBT)u, > 0.

The third case follows immediately from the fact that @ = 0 is positive semi-definite. O
It is worth noting that feasibility is assumed in Theorem 3.2 but not in Theorem 3.1. It is
not clear if Assumption (iii) of Theorem 3.1 may be satisfied without feasibility. This topic
perhaps deserves more study because infeasible starting points are used in most practical

implementations.

4 Concluding Remarks

The generality of problem (1.1) and the perturbed and damped Newton’s method viewpoint
have enabled us to analyze the local convergence behavior of a class of interior-point algo-
rithms for linear programming, quadratic programming and linear complementarity problems
in a unified approach.

We developed a Q-superlinear convergence theory that does not assume any information
on the Jacobian matrix at the solution. This theory was used to establish sufficient conditions
for (-superlinear convergence of a class of interior-point algorithms for linear programming,
quadratic programming (with @ positive semi-definite on the null space of A) and positive

semi-definite linear complementarity problems.
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